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a b s t r a c t 

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) 

tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based 

segmentation model generally requires a large number of manual delineations of WM tracts, which can 

be expensive and time-consuming. Although it is possible to carefully curate abundant training data for 

a set of WM tracts of interest, there can also be novel WM tracts—i.e., WM tracts that are not included 

in the existing annotated WM tracts—that are specific to a new scientific problem, and it is desired that 

the novel WM tracts can be segmented without repeating the laborious collection of a large number of 

manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge 

learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning 

strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few anno- 

tated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last 

task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the 

pretraining and fine-tuning framework, we propose an improved transfer learning approach to the seg- 

mentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is 

incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific 

layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer 

for the target model that segments novel WM tracts. In addition, to allow further improvement of the 

initialization of the last layer and thus the segmentation performance in the few-shot setting, we de- 

velop a simple yet effective data augmentation strategy that generates synthetic annotated images with 

tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI 

scans from public and private datasets under various experimental settings, and the results indicate that 

our method 
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ines. Specific WM tracts can be segmented manually by selecting 

he fiber streamlines according to the knowledge of experts and 

rouping the selected streamlines into fiber bundles ( Stieltjes et al., 

013; Thiebaut de Schotten et al., 2011 ). However, the manual se- 

ection is laborious and subjective, and the reproducibility of man- 

al WM tract segmentation can be poor. Therefore, it is highly de- 

ired to develop automated WM tract segmentation approaches for 

euroimaging studies. 

Previous works have automatically classified the fiber stream- 

ines into anatomically defined WM tracts according to the regions 

f interest (ROIs) through which the streamlines pass ( Cook et al., 

005; Wassermann et al., 2016 ) or reference streamlines defined in 

treamline atlases ( O’Donnell and Westin, 2007; Garyfallidis et al., 

018; Wu et al., 2020 ). An alternative automated strategy is to di- 

ectly assign tract labels to the voxels in a dMRI scan based on 

he anatomical prior knowledge and diffusion features. Since vox- 

ls are directly labeled without necessarily performing fiber track- 

ng, we refer to this type of WM tract segmentation approaches 

s volumetric WM tract segmentation ( Lu et al., 2021 ). For exam- 

le, a volumetric tract atlas can be registered nonlinearly to test 

cans using maps of diffusion features to obtain the segmentation 

esults ( Oishi et al., 2009 ). More advanced approaches use machine 

earning techniques, such as Markov random fields, random forests, 

r k -nearest neighbors, to label the voxels ( Bazin et al., 2011; Ye

t al., 2015; Ratnarajah and Qiu, 2014 ). 

Recently, convolutional neural networks (CNNs) have been suc- 

essfully applied to WM tract segmentation with remarkably im- 

roved performance ( Zhang et al., 2020; Wasserthal et al., 2018; 

i et al., 2020 ). Like earlier WM 
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mproves the quality of the segmentation of novel WM tracts given 

nly a few annotated training images. 

A preliminary version of this work has been presented at IPMI 

021 ( Lu and Ye, 2021 ). Compared with the conference version, in 

he current manuscript we have described the proposed method- 

logy with more details and have further developed TractMix that 

enerates additional synthetic training data to improve the seg- 

entation performance. In addition, we have performed a more 

omprehensive evaluation of the proposed method, where addi- 

ional experimental settings and an additional dataset have been 

onsidered. In particular, using the additional private dataset, we 

how that the proposed method can be applied when domain 

hift ( Ganin and Lempitsky, 2015 ) exists between the data used for 

egmenting existing and novel WM tracts and it is applicable to 

oth HC subjects and AD patients. 

The remaining of the paper is organized as follows. 

ection 2 describes the proposed approach to the segmenta- 

ion of novel WM tracts in the few-shot setting. Section 3 presents 

he results on the public and private datasets under various ex- 

erimental settings. In Section 4 , we discuss the results and future 

orks. Finally, Section 5 summarizes the proposed work. 

. Methods 

In this section, we first formulate the problem of segment- 

ng novel WM tracts and introduce classic fine-tuning. Then, we 

resent the proposed transfer learning approach to few-shot seg- 

entation of novel WM tracts, as well as how this approach moti- 

ates a better implementation. In addition, we describe how to fur- 

her benefit the transfer learning by better exploiting the few an- 

otated scans with data augmentation achieved by tract-aware im- 

ge mixing. Finally, we introduce the backbone CNN for WM tract 

egmentation and describe the implementation details. 

.1. Problem formulation and classic fine-tuning 

Suppose we are given a CNN-based segmentation model pre- 

rained with abundant annotations for segmenting a set of WM 

racts, which, for convenience, are referred to as existing WM 

racts. We are interested in the segmentation of a novel set of WM 

racts that are not included in the training set of the given model. 2 

nly a few annotations are available for these novel WM tracts 

ecause delineations of WM tracts are generally labor-intensive. 

ur goal is to achieve decent segmentation accuracy for the novel 

M tracts with the scarce annotations. To achieve such a goal, 

 common practice is to transfer the knowledge learned for seg- 

enting existing WM tracts in the given model to the segmen- 

ation of novel WM tracts. Typically, a classic fine-tuning strat- 

gy ( Tajbakhsh et al., 2016 ) can be used to perform the knowledge

ransfer, and its mathematical formulation is given below. 

We denote the network models for segmenting existing and 

ovel WM tracts by M e and M n , respectively. In classic fine- 

uning, M e and M n share the same network structure except for 

he last task-specific layer. We denote the task-specific weights in 

he last layer L e of M e and the last layer L n of M n by θe and θn ,

espectively, and the other weights in M e or M n are denoted by 

. Suppose the input image is X ; from X a multi-channel feature 

ap F is computed with a mapping f (X ; θ) parameterized by θ: 

 = f (X ; θ) , (1) 

nd the segmentation probability map P e or P n for existing or 

ovel WM tracts is computed from F with L e or L n using another 
2 Following the terminology that is commonly used in few-shot learning ( Li et al., 

019; Lifchitz et al., 2019 ), we use the word “novel” to represent new classes of WM 

racts. 
apping g e (F ; θe ) or g n (F ; θn ) parameterized by θe or θn , respec- 

ively: 

 e = g e (F ; θe ) = g e ( f (X ; θ) ; θe ) and P n {Pe  
 = 
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oxel v from the information of existing WM tracts is given by 

p v e → n , j = 

1 

1 + exp 

(
−(b j + 

∑ M 

i =1 w i j h 

v 
e ,i 

) 
) , (4) 

here w i j and b j are the regression parameters to be determined. 

Combining the prediction of all novel WM tracts at voxel v into 

 vector P v e → n = (p v 
e → n , 1 

, . . . , p v 
e → n ,N 

) T , we simply have 

 

v 
e → n = σ

(
WH 

v 
e + b 

)
, (5) 

here 

 = 

⎡ ⎣ 

w 11 · · · w 1 M 

. . . 
. . . 

. . . 
w N1 · · · w NM 

⎤ ⎦ and b = [ b 1 , . . . , b N ] 
T 
. (6) 

ote that H 

v 
e = 

˜ W e ̃
 F v + ̃

 b e , where ̃  F v corresponds to the v -th voxel 

f ˜ F = f (X ; ˜ θ) that is computed with the weights ˜ θ learned for 

egmenting existing WM tracts, and 

˜ W e and 

˜ b e are the values of 

 e and b e learned for segmenting existing WM tracts, respectively. 

hen, we have 

 

v 
e → n = σ

(
W 

(˜ W e ̃
 F v + ̃

 b e 

)
+ b 

)
= σ

(
W ̃

 W e ̃
 F v + W ̃

 b e + b 

)
. (7) 

Comparing P v n in Eq. (3) and P v e → n in Eq. (7) , we notice that

nstead of being randomly initialized, θn = { W n , b n } may be better

nitialized using the information in θe = { W e , b e } . Here, W and b

till need to be computed for initializing θn , and they can be com- 

uted by minimizing the difference between P v e → n and the anno- 

ation of novel WM tracts. Note that although there are only a few 

nnotations of novel WM tracts, they are sufficient for the compu- 

ation of W and b because the number of unknown parameters is 

rastically reduced. Then, suppose the estimates of W and b are ˜ W 

nd 

˜ b , respectively; W n and b n are initialized as 

 n ← 

˜ W ̃

 W e and b n ← 

˜ W ̃

 b e + ̃

 b . (8) 

inally, with θ initialized by ˜ θ like in classic fine-tuning, all net- 

ork weights in M n are learned jointly using the small number of 

nnotations of novel WM tracts. 

.3. A better implementation with warmup 

The derivation above suggests a possible way of using all infor- 

ation learned in M e for segmenting existing WM tracts to im- 

rove the segmentation of novel WM tracts. However, it is possi- 

le to have a more convenient implementation. To see that, we let 

 

′ = W ̃

 W e and b ′ = W ̃

 b e + b. Then, Eq. (7) becomes 

 

v 
e → n = σ

(
W 

′ ˜ F v + b 

′ ). (9) 

his suggests that we can directly estimate W 

′ and b ′ and use the 

stimated values to initialize θn . This is equivalent to inserting a 

armup stage before the classic fine-tuning, and the information 

n θe becomes redundant with such a fine-tuning strategy (but not 

ith classic fine-tuning). Specifically, given the trained model M e , 

or M n we first initialize θ as ˜ θ. Then, we fix θ and learn θn (ran- 

omly initialized) from the annotations of novel WM tracts. Finally, 

ith the initial value of θn learned in the previous warmup stage, 

e jointly fine-tune the weights θ and θn using the 
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Fig. 1. The detailed network architecture of TractSeg, which is used as the backbone segmentation network in this work. The numbers of channels are indicated for the 

layers. Note that the number of channels of the last layer is M when the network segments existing WM tracts, and the number is N for segmenting novel WM tracts. 
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3 If there are fewer than three fiber orientations, the intensities are set to zero in 
he computation of M ; �·� represents the ceiling operation. Since 

he data mixing in Eqs. (10) and (11) with the mask defined in 

q. (12) mixes the WM tracts in two images, the proposed data 

ugmentation strategy is named TractMix. Note that in general the 

amples generated by image mixing may not always look realistic, 

et they can still benefit the network training ( Yun et al., 2019; 

hang et al., 2018 ). 

By repeating the random sampling of the annotated images 

sed for image mixing and WM tracts used for computing M , a 

umber of synthetic annotated images can be generated. With K

eal images annotated for N novel WM tracts, TractMix can pro- 

uce K × (K − 1) × (2 N − 1) different synthetic annotated images 

t most, and duplicate synthetic samples are not allowed. Suppose 

he desired number of synthetic annotated images is K s ; in this 

ork, we set K s = min { 100 , K × (K − 1) × (2 N − 1) } , so that a large

umber of unique synthetic images can be produced. The synthetic 

mages and their annotations are used together with the real anno- 

ated images X and real annotations Y for initializing the last layer 

f the network that segments novel WM tracts. Note that for the fi- 

al fine-tuning step where all network weights are jointly updated, 

nly the real images X and real annotations Y are used. This is be- 

ause after the initialization of the last layer, the network weights 

an be already close to the desired values, and the incorporation 

f the synthetic samples that may be unrealistic could negatively 

ffect the final fine-tuning. 

We choose to perform offline data augmentation with TractMix, 

here the synthetic samples are generated before network train- 

ng, so that TractMix can be conveniently integrated with an arbi- 

rary segmentation framework without the need of modifying its 

ode, for example, the code for batch generation. Also, even when 

nly the interface of the segmentation framework is available with- 

ut the access to its source code, the offline data augmentation can 

till be applied. 

Note that the data augmentation step can be optional. As shown 

ater in the experimental results in Section 3.3 and Appendix A , 

he proposed data augmentation approach allows substantially im- 

roved segmentation accuracy for the more challenging scenario 

here domain shift exists between the data used for segmenting 

xisting and novel WM tracts. For the less challenging scenario 

ithout the domain shift, the segmentation performance of the 
t

5 
roposed method without TractMix is already good, and the seg- 

entation accuracy is similar with or without TractMix. 

.5. Backbone network for WM tract segmentation 

Our method is generic and agnostic to the structure of the 

egmentation network. For demonstration, we choose the Tract- 

eg architecture ( Wasserthal et al., 2018 ) as the backbone network, 

hich has achieved state-of-the-art performance and been applied 

o brain studies ( Veraart et al., 2021; Bryant et al., 2021 ), but other

etworks can also be used if they are shown superior to the Tract- 

eg architecture. 

The detailed network architecture of TractSeg is shown in Fig. 1 . 

ractSeg uses an encoder-decoder CNN based on the 2D U-net ar- 

hitecture ( Ronneberger et al., 2015 ) to segment WM tracts. The 

nputs to the CNN are fiber orientation maps, so that the network 

an be applied to data acquired with various protocols. The fiber 

rientations are computed with multi-shell multi-tissue constrained 

pherical deconvolution (MSMT-CSD) ( Jeurissen et al., 2014; Tournier 

t al., 2019 ) for multi-shell dMRI data and constrained spherical de- 

onvolution (CSD) ( Tournier et al., 2007 ) for single-shell dMRI data. 

or each voxel, the maximum number of fiber orientations is set to 

hree, and thus there are nine input channels. 3 Given a 3D image 

f fiber orientations, the network performs 2D segmentation for 

ach image view—the coronal, axial, or sagittal view—separately, 

nd then these results are merged for the final segmentation. Note 

hat the same network structure is used to segment existing or 

ovel WM tracts, except that the number of channels of the output 

ayer is M for existing WM tracts and N for novel WM tracts. 

.6. Implementation details 

We have implemented the proposed method based on the 

pen-source code of TractSeg at https://github.com/MIC-DKFZ/ 

ractSeg/ using PyTorch ( Paszke et al., 2019 ). To pretrain 

he network for segmenting existing WM tracts, we follow 

asserthal et al. (2018) and minimize the cross-entropy loss, 
he corresponding channels. 

https://github.com/MIC-DKFZ/TractSeg/
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Table 1 

A list of the 12 novel WM tracts and their abbreviations. 

WM tract name abbreviation WM tract name abbreviation 

1 Corticospinal tract left CST_left 7 Optic radiation left OR_left 

2 Corticospinal tract right CST_right 8 Optic radiation right OR_right 

3 Fronto-pontine tract left FPT_left 9 Inferior longitudinal fascicle left ILF_left 

4 Fronto-pontine tract right FPT_right 10 Inferior longitudinal fascicle right ILF_right 

5 Parieto-occipital pontine left POPT_left 11 Uncinate fascicle left UF_left 

6 Parieto-occipital pontine right POPT_right 12 Uncinate fascicle right UF_right 
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here Adamax ( Kingma and Ba, 2015 ) is used as the op- 

imizer with a learning rate of 0.001 and a batch size of 

7 ( Wasserthal et al., 2019 ). In addition, dropout with a probabil- 

ty of 0.4 is used like in Wasserthal et al. (2018) . Network train-

ng is performed with 300 epochs to ensure convergence, and the 

odel corresponding to the epoch with the highest Dice score on 

 validation set is selected. Similarly for the novel WM tracts, the 

raining specification described above is also used at each step 

f parameter learning, including the initialization of the network 

eights of the last layer and the final fine-tuning. Since in TractSeg 

raditional data augmentation (elastic deformation, scaling, inten- 

ity perturbation, etc.) is applied to training images online by de- 

ault, these operations are also performed online during pretrain- 

ng and at each training step of the proposed transfer learning ap- 

roach (for the synthetic samples generated offline by TractMix as 

ell). 

. Results 

In this section, we present the validation of our method on the 

ublicly available HCP dataset ( Van Essen et al., 2013 ) and a private

ataset comprising both HC subjects and AD patients. In the exper- 

ments, the proposed method was evaluated under various exper- 

mental settings. We first introduce the datasets and experimental 

ettings, and then we describe the experimental results on the two 

atasets. 

.1. Data description and experimental settings 

.1.1. The HCP dataset 

We first selected the dMRI scans from the HCP dataset ( Van Es- 

en et al., 2013 ) for evaluation. The dMRI scans were acquired 

ith 270 diffusion gradients (  

 002 Tc
/F1 1 Tf
7.9701 0 0 7.9701 206.761 53761 146.6879 2pochs 
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.1.2. The private dataset 

To show that the proposed method is not just applicable to 

he HCP dataset, we also used a private dataset ( Qin et al., 2021 )

o evaluate the segmentation performance. This dataset contained 

oth HC subjects and AD patients. The dMRI scans in the pri- 

ate dataset were acquired on a GE Premier scanner with an 

sotropic spatial resolution of 1.7 mm and 270 diffusion gradi- 

nts ( b = 10 0 0 , 20 0 0 , and 30 0 0 s / mm 

2 ). These dMRI scans were

reprocessed with the FSL topup ( Andersson et al., 2003 ) and 

ddy ( Andersson and Sotiropoulos, 2016 ) tools for distortion and 

otion correction. 

For this dataset, 10 WM tracts were annotated according to the 

nnotation protocol described in Wasserthal et al. (2018) , and they 

ncluded the tracts listed in Table 1 except ILF_left and ILF_right. 

he ten annotated tracts were used as the set of novel WM tracts. 

ote that since other WM tracts were not annotated for this 

ataset, we selected the network pretrained with the original HCP 

MRI scans for segmenting existing WM tracts as the pretrained 

odel, and this pretrained model was then fine-tuned with the an- 

otated dMRI scans in the private dataset for segmenting the novel 

M tracts. Specifically, HCPThe Themodepupthis  
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Fig. 2. 3D renderings and cross-sectional views of the segmentation results (red) for representative test subjects and WM tracts. The cross-sectional views are overlaid on 

the FA map. The zoomed views of the highlighted regions in the cross-sectional views are also shown. The results of the proposed and competing methods are shown 

together with the manual delineations. The image orientations are indicated in the rightmost column. Note the 3D renderings for comparing the tract geometry and the 

highlighted regions for comparing the spatial coverage of tracts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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he segmentation network can provide a moderate mean Dice co- 

fficient, and after the final fine-tuning step (Step Two), the seg- 

entation accuracy is substantially improved. 

Like Lu et al. (2021) , we considered an additional met- 

ic for evaluation, which is the relative volume differ- 

nce (RVD) ( Yeghiazaryan and Voiculescu, 2018 ) between the 

egmented WM tract and the corresponding manual delineation. 

hen similar segmentation accuracy is achieved in terms of the 

ice coefficient, a smaller RVD value is desired to reduce the 

ias of the quantification of tract volumes. We computed the 

verage RVD for each tract, and the results of each method and UB 

re shown in Fig. 5 . The mean of the average RVD values is also

ndicated for each method and UB in Fig. 5 . Again, like in Fig. 4 the

verage RVD values of Ours2 were compared with those of the 

ther methods (including Ours1) using paired Student’s t-tests, 

nd the effect sizes were computed. We can see that both Ours1 
8 
nd Ours2 have better (smaller) RVD values than the competing 

ethods, and their results are close to the UB performance. Ours2 

s significantly ( p < 0 . 05 or p < 0 . 001 ) better than the competing

ethods with large ( d > 0 . 8 ) or medium ( d close to 0.5) effect

izes. Although the mean RVD of Ours2 is slightly smaller than 

hat of Ours1, the performance of Ours1 and Ours2 is comparable, 

s indicated by the very small effect size and non-significant 

ifference between them. 

.2.2. Impact of the number of training scans annotated for novel 

M tracts 

We further investigated the impact of the number of training 

cans that were annotated for novel WM tracts. As described in 

ection 3.1.1 , we considered two additional experimental settings, 

here the numbers of annotated scans in the training/validation 

et for network fine-tuning were 1/0 and 5/2, respectively. 
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Fig. 3. Boxplots of the Dice coefficients on the test scans for all 12 novel WM tracts. Our method (either Ours1 or Ours2) achieved higher Dice coefficients than the competing 

methods, and these Dice coefficients are also much closer to the UB performance. 

Table 2 

The effect sizes (Cohen’s d) for the comparison of Dice coefficients between the proposed method (Ours1 

or Ours2) and the competing methods for each novel WM tract. Asterisks ( ∗∗∗) indicate that the difference 

between the proposed and competing methods is highly significant ( p < . 001 ) using a paired Student’s t- 

test after Bonferroni correction for multiple comparisons. 

Ours1 v.s. Baseline Atlas FSL FT Ours2 v.s. Baseline Atlas FSL FT 

CST_left d 53.86 3.85 3.59 CST_left d 52.32 3.86 3.61 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

CST_right d 24.23 1.71 1.61 CST_right d 24.57 1.71 1.61 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

FPT_left d 35.60 5.88 3.08 FPT_left d 36.16 6.16 3.29 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

FPT_right d 25.45 2.59 1.26 FPT_right d 25.09 2.59 1.28 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

POPT_left d 70.62 7.34 3.81 POPT_left d 69.52 7.25 3.75 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

POPT_right d 50.88 5.42 2.88 POPT_right d 51.12 5.50 2.95 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

OR_left d 41.42 7.30 3.90 OR_left d 40.79 7.34 3.97 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

OR_right d 33.23 5.26 2.30 OR_right d 32.93 5.34 2.40 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

ILF_left d 35.44 7.24 2.96 ILF_left d 36.78 7.49 3.07 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

ILF_right d 34.06 6.55 3.32 ILF_right d 31.48 6.24 3.24 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

UF_left d 19.35 2.07 2.31 UF_left d 20.31 2.09 2.32 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

UF_right d 27.62 2.35 2.09 UF_right d 29.09 2.53 2.20 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

Table 3 

The mean value of the average Dice coefficients of 

the novel WM tracts after each step of the proposed 

transfer learning approach (both Ours1 and Ours2). 

For convenience, we refer to the initialization of the 

last layer only without the final fine-tuning step as 

Step One, and the final fine-tuning step is referred 

to as Step Two. 

Ours1 Ours2 

Step One Step Two Step One Step Two 

0.361 0.807 0.413 0.808 
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For each additional experimental setting, we computed the av- 

rage Dice coefficient and the average RVD for each tract. The 

eans of the average Dice coefficients and the average RVD values 
9 
re reported for each method in Tables 4 and 5 , respectively. The 

B performance was also computed and listed for reference. We 

an see that under these two settings, either Ours1 or Ours2 is bet- 

er than the competing methods, as indicated by the higher Dice 

oefficients and lower RVD values, and their results are closer to 

he UB performance. In particular, the performance of either Ours1 

r Ours2 with only one annotated training scan for the novel WM 

racts is better than the performance of classic fine-tuning with 

ve annotated training scans. 

In addition, in Tables 4 and 5 , we compared the average Dice 

oefficients and average RVD values of Ours2 with those of the 

ther methods using paired Student’s t-tests and measured the ef- 

ect sizes. For both Dice coefficients and RVD values, Ours2 signif- 

cantly ( p < 0 . 05 or p < 0 . 001 ) outperforms the baseline method,

tlas FSL, and FT, mostly with large effect sizes ( d > 0 . 8 ). Although

he Dice coefficient of Ours2 is slightly higher than that of Ours1, 
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Table 4 

The means of the average Dice coefficients of the novel WM tracts achieved with different num- 

bers of annotated training scans. Our results are highlighted in bold. The effect sizes (Cohen’s d) for 

comparing the average Dice coefficients between Ours2 and the other methods are also listed. Aster- 

isks indicate that the difference between Ours2 and the other method is significant using a paired 

Student’s t-test. ( ∗∗ p < . 01 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 Dice 0.000 0.645 0.590 0.777 0.784 0.828 

d 20.444 1.919 1.944 0.131 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - - 

5 Dice 0.052 0.683 0.757 0.811 0.812 0.830 

d 10.362 2.004 1.000 0.021 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ n.s. - - 

Table 5 

The means of the average RVD values of the novel WM tracts achieved with different numbers of 

annotated training scans. Our results are highlighted in bold. The effect sizes (Cohen’s d) for compar- 

ing the average RVD values between Ours2 and the other methods are also listed. Asterisks indicate 

that the difference between Ours2 and the other method is significant using a paired Student’s t-test. 

( ∗ p < . 05 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 RVD 1.000 0.182 0.392 0.156 0.151 0.105 

d 17.458 0.403 1.854 0.067 - - 

p ∗∗∗ ∗ ∗∗∗ n.s. - - 

5 RVD 0.955 0.199 0.158 0.129 0.131 0.105 

d 11.234 0.815 0.372 0.036 - - 

p ∗∗∗ ∗ ∗ n.s. - - 

Fig. 4. Boxplots of the average Dice coefficient for each tract. The means of the 

average Dice coefficients are indicated. The effect sizes (Cohen’s d) for comparing 

the average Dice coefficients between Ours2 and the other methods are also listed. 

Asterisks indicate that the difference between Ours2 and the other method is sig- 

nificant ( ∗ p < . 05 and ∗∗∗ p < . 001 ) using a paired Student’s t-test. 

t
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Fig. 5. Boxplots of the average RVD for each tract. The means of the average RVD 

values are indicated. The effect sizes (Cohen’s d) for comparing the average RVD 

values between Ours2 and the other methods are also listed. Asterisks indicate that 

the difference between Ours2 and the other method is significant ( ∗ p < . 05 and 
∗∗∗ p < . 001 ) using a paired Student’s t-test. Note that n.s. represents non-significant 

( p ≥ 0 . 05 ) difference. 

i

w

t

t

3

t

u

heir performance is still comparable, as indicated by the small ef- 

ect sizes ( d < 0 . 2 ) of the Dice coefficient and RVD. 

.2.3. Segmentation performance with different selections of novel 

M tracts 

We then varied the selection of the novel WM tracts as de- 

cribed in Section 3.1.1 and evaluated the segmentation perfor- 

ance for the different selections (with three annotated training 

cans). For each selection, we computed the average Dice coeffi- 

ient for each novel WM tract, and the results are summarized 
10 
n Table 6 for each method and the UB. Like the results achieved 

ith 12 novel WM tracts in Section 3.2.1 , for these different selec- 

ions of novel WM tracts, the proposed method also outperforms 

he competing methods, and its performance is close to the UB. 

.2.4. Impact of data quality 

We also investigated the impact of data quality on the segmen- 

ation performance as described in Section 3.1.1 . In particular, we 

sed 52/13 clinical quality dMRI scans as the training/validation 
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Table 6 

The average Dice coefficient for each novel WM tract when the selection of the 

novel WM tracts varied (with three annotated training scans). Our results are high- 

lighted in bold. 

Selection One Baseline Atlas FSL FT Ours1 Ours2 UB 

CST_left 0.000 0.761 0.750 0.835 0.842 0.856 

CST_right 0.002 0.754 0.740 0.825 0.830 0.848 

POPT_left 0.000 0.723 0.760 0.841 0.846 0.859 

POPT_right 0.000 0.714 0.763 0.834 0.835 0.850 

OR_left 0.000 0.603 0.697 0.823 0.823 0.836 

OR_right 0.000 0.623 0.707 0.783 0.780 0.801 

Selection Two Baseline Atlas FSL FT Ours1 Ours2 UB
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Table 7 

The means of the average Dice coefficients of the novel WM tracts for the clinical quality data. Our 

results are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average Dice coef- 

ficients between Ours2 and the other methods are also listed. Asterisks indicate that the differ- 

ence between Ours2 and the other method is significant using a paired Student’s t-test. ( ∗ p < . 05 , 
∗∗∗ p < . 001 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 Dice 0.000 0.634 0.043 0.694 0.724 0.788 

d 15.097 1.196 9.934 0.445 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ - - 

3 Dice 0.000 0.659 0.473 0.758 0.764 0.790 

d 18.147 1.476 2.075 0.102 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ - - 

5 Dice 0.000 0.662 0.635 0.757 0.761 0.784 

d 15.879 1.334 1.352 0.057 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗ - - 

Table 8 

The means of the average RVD values of the novel WM tracts for the clinical quality data. Our results 

are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average RVD values between 

Ours2 and the other methods are also listed. Asterisks indicate that the difference between Ours2 and 

the other method is significant using a paired Student’s t-test. ( ∗ p < . 05 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 RVD 1.000 0.224 41.447 0.258 0.213 0.171 

d 14.318 0.131 1.314 0.583 - - 

p ∗∗∗ n.s. ∗ ∗∗∗ - - 

3 RVD 1.000 0.238 0.562 0.159 0.157 0.160 

d 16.683 0.975 2.841 0.032 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ n.s. - - 

5 RVD 1.000 0.271 0.362 0.183 0.176 0.178 

d 12.906 0.995 1.594 0.075 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗ - - 

Table 9 

The means of the average Dice coefficients and average RVD values of the novel WM tracts for the private dataset. 

Our results are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average Dice coefficients or 

average RVD values between Ours2 + TractMix and the other methods are also listed. Asterisks indicate that the 

difference between Ours2 + TractMix and the other method is significant ( ∗ p < . 05 , ∗∗ p < . 01 , and ∗∗∗ p < . 001 ) 

using a paired Student’s t-test. The means computed with the HC subjects and the AD patients separately are 

shown as well. 

Baseline Atlas FSL FT Ours1 Ours2 Ours1 + TractMix Ours2 + TractMix 

All Dice 0.008 0.587 0.452 0.645 0.694 0.715 0.728 

d 19.116 2.881 2.121 1.529 0.676 0.241 - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - 

RVD 0.991 0.242 0.603 0.398 0.326 0.305 0.277 

d 10.168 0.333 2.118 1.285 0.504 0.287 - 

p ∗∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - 

HC Dice 0.009 0.610 0.463 0.667 0.712 0.732 0.743 

RVD 0.990 0.241 0.583 0.358 0.294 0.275 0.252 

AD Dice 0.008 0.565 0.441 0.622 0.675 0.698 0.712 

RVD 0.992 0.243 0.623 0.439 0.358 0.335 0.301 

Table 10 

The means of the average Dice coefficients and average RVD values of the novel WM tracts for the private dataset 

when the selection of the novel WM tracts varied. Our results are highlighted in bold. 

Selection Baseline Atlas FSL FT Ours1 Ours2 Ours1 + TractMix Ours2 + TractMix 

One Dice 0.008 0.602 0.520 0.687 0.713 0.720 0.717 

RVD 0.989 0.267 0.545 0.344 0.286 0.284 0.280 

Two Dice 0.000 0.589 0.372 0.540 0.662 0.670 0.682 

RVD 0.985 0.303 0.729 0.538 0.366 0.359 0.346 

12 
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(
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see Appendix A ), possibly because the segmentation accuracy is 

lready good and close to the upper bound even without Tract- 

ix. Note that as brains are generally located at the center of dMRI 

cans, we do not perform image registration before image mixing, 

hich would require nontrivial interpolation of multiple fiber ori- 

ntations. Although there can be misalignment between
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ppendix A. Segmentation accuracy of the proposed method 

chieved with and without TractMix for the HCP dataset 

In this appendix, we present and compare the results of the 

roposed method on the HCP dataset achieved with and without 

ractMix. In particular, the mean value of the average Dice coeffi- 

ients of the novel WM tracts is summarized in Table A:1 for each 

xperimental setting in Section 3.2 . Here, HQ and CQ represent the 

xperiments on the original high-quality and the generated clinical 

uality scans, respectively. Note that TractMix was only applicable 

ith more than one annotated scans. The results show that for the 

xperiments on the HCP dataset, where there was no domain shift 

etween the scans used for segmenting existing and novel WM 

racts, the performance of the proposed method achieved with or 

ithout TractMix is similar. 
able A:1 

he means of the average Dice coefficients of the novel WM tracts of the proposed 

ethod achieved with and without TractMix for the HCP dataset. For convenience, 

e refer to the experiments on the original high-quality and the generated clinical 

uality data as HQ and CQ, respectively. Selection All refers to the use of all 12 

ovel WM tracts. 

Data 

Annotated 

training 

scans Selection Ours1 Ours2 

Ours1 + 

TractMix 

Ours2 + 

TractMix 

HQ 5 All 0.811 0.812 0.812 0.812 

HQ 3 All 0.807 0.808 0.809 0.809 

HQ 3 One 0.824 0.826 0.828 0.827 

HQ 3 Two 0.821 0.821 0.821 0.821 

CQ 5 All 0.757 0.761 0.761 0.763 

CQ 3 All 0.758 0.764 0.766 0.769 
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