

,

,-**Q** ,,¹, ,,¹,

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

,*

ARTICLE INFO

 Article history:
 2021

 1
 2022

 2022
 2022

 12
 2022

Keywords:

τουματοποίο 20 - Αποτικά Αγγαρία Αγγαγία 20 - Αποτικά Αγγαρία 20 - Αποτικά Αγγαρία 20 - Αποτικά Αγγαρία 20 - Αποτικά Αγγαρία

ABSTRACT

,1_,

· · · · · · · diffusion magnetic resonance imaging (.....). -____ usi · . . · , · · · · · , . . • • • • • · · , · , · , · , 1, . • • •, • • • • • • • • · , ,, . , . , , , • / , . , . , **-**. ٠, , ÷., , ٠, , · · · · , Ξ, , . . -, • . . · · · · · · , × - -...., , *. .*, , *·* . 2 ·, · · · . . . -1 . , 2. . , • . , -. . . - , · · , ... 2 . .

, -

,

201 . , 2020). J . -, - L - **x**, , -· · · · - . . , · · · . . . (..., ., 200). , , , , , , $\mathbf{N}_{\mathcal{F}}$ 1. , convolutional neural networks (....)

Medical Image Analysis 79 (2022) 102454

* - i ,

2. Methods

• • • 1. . . .

2.1. Problem formulation and classic fine-tuning

· · · · · · · · -. , .-**.** . . . \mathcal{M} , \mathcal{M} , \mathcal{M} , \mathcal{M} , \mathcal{M} , \mathcal{M} \mathcal{M} θ, $\boldsymbol{\theta}$. $\boldsymbol{\theta}$. \boldsymbol{X} \boldsymbol{X} \boldsymbol{X} \boldsymbol{X} , **F** , $f(\mathbf{X}; \boldsymbol{\theta})$, $f(\mathbf{X}; \boldsymbol{\theta})$ A $\mathbf{F} = f(\mathbf{X}; \boldsymbol{\theta}),$ (1)

, **P P** , ,

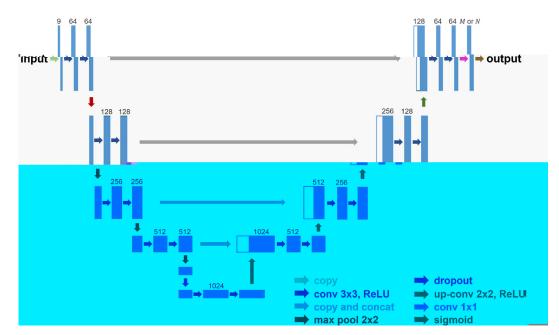
$$g(\mathbf{F}; \boldsymbol{\theta}) = g(\mathbf{F}; \boldsymbol{\theta}) |_{\boldsymbol{\theta}}, \quad \boldsymbol{\theta} = \boldsymbol{\theta}, \quad \mathbf{r} = \sqrt{-1}$$

$$\mathbf{P} = g (\mathbf{F}; \boldsymbol{\theta}) = g (f(\mathbf{X}; \boldsymbol{\theta}); \boldsymbol{\theta}) \quad \mathbf{P}$$

$$p^{\nu}_{\to j} = \frac{1}{1 + \dots \left(-(b_j + \sum_{i=1}^{M} w_{ij} h^{\nu}_{,i}) \right)}, \qquad ()$$

$$w_{ij}, b_j, \dots, p_{\rightarrow N}^{\nu}$$
, $\mathbf{P}^{\nu}_{\rightarrow} = (p_{\rightarrow N}^{\nu}, \dots, p_{\rightarrow N}^{\nu})^{\mathsf{T}},$

$$\mathbf{P}^{\nu}_{\rightarrow} = \sigma \left(\mathbf{W} \mathbf{H}^{\nu} + \boldsymbol{b} \right), \tag{()}$$


$$\mathbf{W} = \begin{bmatrix} w_{11} & \cdots & w_{1M} \\ \vdots & \ddots & \vdots \\ w_{N1} & \cdots & w_{NM} \end{bmatrix}, \qquad \mathbf{b} = b_1, \dots, b_N^{T}.$$
()

 \mathcal{L} , \mathcal{L} , $\mathbf{H}^{\nu} = \widetilde{\mathbf{W}} \ \widetilde{\mathbf{F}}^{\nu} + \mathbf{b}$, $\widetilde{\mathbf{F}}^{\nu}$, \mathcal{L} , \mathcal{L} , \mathcal{V} , \mathcal{V}

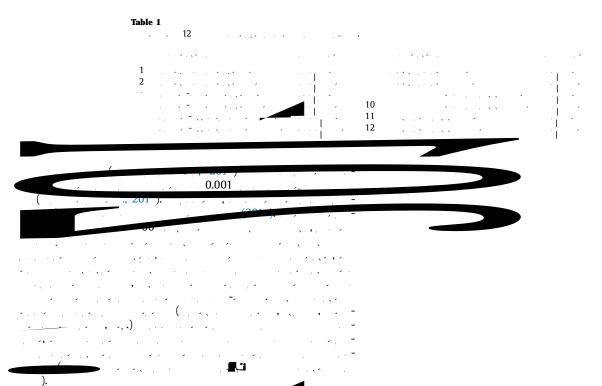
$$\mathbf{P}^{\nu}_{\rightarrow} = \sigma \left(\mathbf{W} \left(\widetilde{\mathbf{W}} \ \widetilde{\mathbf{F}}^{\nu} + \boldsymbol{b} \ \right) + \boldsymbol{b} \right) = \sigma \left(\mathbf{W} \widetilde{\mathbf{W}} \ \widetilde{\mathbf{F}}^{\nu} + \mathbf{W} \boldsymbol{b} \ + \boldsymbol{b} \right).$$
()

2.3. A better implementation with warmup

 $\mathbf{W}' = \mathbf{W}\widetilde{\mathbf{W}} \qquad \mathbf{b}' = \mathbf{W}\mathbf{b} + \mathbf{b} \qquad , \qquad () \qquad) \qquad \qquad () \qquad \quad () \qquad \qquad () \qquad \quad ()$, $\mathbf{P}^{\nu}_{\rightarrow} = \sigma \left(\mathbf{W}' \widetilde{\mathbf{F}}^{\nu} + \mathbf{b}' \right).$ ()

M [·] ` (12) , , **.**, ., 201 (. . . ., <mark>., 201</mark>).

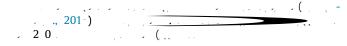
. М, $K \times (K-1) \times (2^N - 1)$,...Κ , K , $K = \{100, K \times (K-1) \times (2^N - 1)\},$ ۰, , X, . . , . . . Y **,** , , , -. , --. .


· . · , •, , , **.** 1 · · , , , · · 1 · , · , · . . , -. , . . . · . . 🔪 🔪 🖕 📲 📫 👘 👘 🖓 👘 , . . · · ·

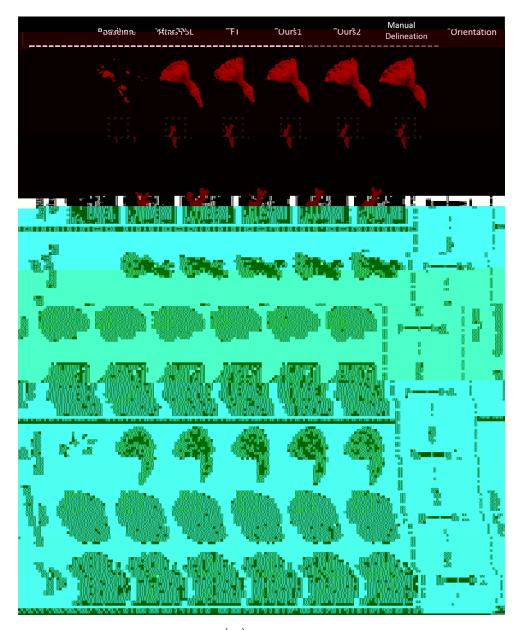
2.5. Backbone network for WM tract segmentation

· · · · · · · · · · · · · · · · · · ·
$\cdots \cdots $
· · · · · · · · · · · · · · · · · · ·
, , , , , 201)
multi shall multi tique constrained
subarised decomposition () () () () () () () () () (
spherical deconvolution () (, 201
(1, 201) $(1, 201)$ constrained spherical de-
convolution $($, $) ($, $2, $, $200) - 1, 2, 2, .$
2 , , , , , , , , , , , , , , , , , , ,
,
, M , , , , , , , , N , , , ,
111

2.6. Implementation details


in the second second

3. Results


3.1. Data description and experimental settings

3.1.1. The HCP dataset

3.1.2. The private dataset

······································
$(x_1, \dots, x_n) = (x_1, \dots, x_n$
en la construcción de la
and and the second s
1. 20
(b = 1000, 2000, -6000 / -2).
··· (· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
, , , , (201), , , , , , , , , , , , , , , , , , ,
$\langle \cdot \cdot \cdot \cdot \cdot \cdot \rangle$
······································
e 0 1 2 1, . , . 1.2 . 1 () 1 . 21 - 1



میں دیاری دیار میں ^{جار}ب کی دمیقیرم کی د ایک اور میر میں امریکی در دیار میں میں ا ایک ایک میں میں امریکی امریکی امریکی Fig. 2. Ζ. ., ., .)

ence (.) ((2021), (2 . . . • • • • . , . . , , . ., t-, . , . . 1 , . **.** . , .

2 $(d > 0.) \qquad (d > 0.)$

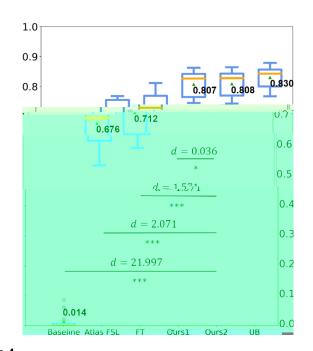
3.2.2. Impact of the number of training scans annotated for novel WM tracts

. 1		۸ ,	2, L.	1.4	2	• ,	×, 1.	L.e.
	d p	***		· . ***	· · · · · · · · ·	d 2. p ***	-2 ***	1 ***
	d p	2 .2 - ***	1. 1 ***	1. 1 ***		d 2.	1. 1 ***	1. 1 ***
1-1	d p	0 ***	***	0 ***	1- ' I	p d p ***		2 ***
	р d р	2 . ***	2. ***	1.2		p d 2.0 p ***		1.2
····/	р d р	0. 2 ***	****	1 ***	····/	p d. p ***	2.2	 ***
····/	d	0. ***	. 2	2. ***		d 1.	12 . 0	2. ***
	p d	1. 2 ***	0 ***	0 ***	· · · · ·	<i>d</i> 0.		***
	p d	.2 - ***	.2	20		p d −2.		2. 0
	p d	***	.2	2. ***		d.		0 ***
	p d	- . 0	***	2 ***		d -1.	.2	2 ***
	p d	*** 1 ***	2.0 ***	21		<i>d</i> 20.	1 2.0	22 ***
· 	p d p	2.2 ***	*** 2 ***	2.0 ***		p*** d2. p***		2.20 ***

Table 3

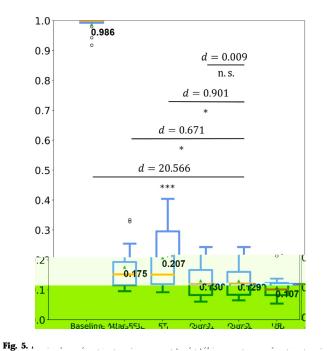
	1		2
0 1	0. 0	0.1-	0. 0

` 2 t-, , , . 2 _ . , (p < 0.0)p < 0.001) . , (d > 0.). 1. , , . 、 -, 2 1, . , . ` ` ` ×. ,


 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\$

	x 1	۰,	×, 1.	L ×	. 1	. 2	
1		0.000	0.	0. 0	0.777	0.784	0.2
	d	20.	1.1	1.	0.1 - 1	-	-
	р	***	***	***	**	-	-
		0.0 2	0	0.	0.811	0.812	00
	d	10 2	2.00	1.000	0.021	-	-
	р	***	***	***		-	-

Table 5


 $(p < .0, p < .001, ..., p \ge 0.0$).

	N. (. ,	·, 1.	1.4	. 1	. 2	
1		1.000	0.1 2	0 2	0.156	0.151	0.10
	d	1.	0.0-	1.	0.0	-	-
	р	***	*	***		-	-
		0.	0.1	0.1	0.129	0.131	0.10
	d	11.2 -	0.1	0 2	0.0	-	-
	р	***	*	*		-	-

(*d* < 0.2)

3.2.3. Segmentation performance with different selections of novel WM tracts

Fig. 5. (1) (p < .0) (p < .0) (p < .0) (p > 0.0) (p > 0.0)

3.2.4. Impact of data quality

 • ,	·, .		. 1	. 2	
 0.000	0. 1	0. 0	0.835	0.842	0.
0.002	0.	0. 0	0.825	0.830	0.
 0.000	0.2	0. 0	0.841	0.846	0.
 0.000	0.1	0	0.834	0.835	0. 0
0.000	0.0-	0.	0.823	0.823	0
0.000	0.2	0.0	0.783	0.780	0.01
، ,	·, 1.		. 1	2	
0.000 0.000	0. 1 0.	0. 02	0.841	0.841	0.

				· · · · · · · · · · · · · · · · · · ·
· , ·		 , - (d) , ,	
	2,			t , t , $(*p < .0$,

,	N (۰,	·, I.	L ×	. 1	. 2	
1		、 0.000	0	0.0	0.694	0.724	0.
	á	1.0	1.1		0.	-	-
	р) ***	***	***	***	-	-
-		0.000	0.	0	0.758	0.764	0. 0
	a	1.1	1.	2.0	0.102	-	-
	μ) ***	***	***	***	-	-
		、 0.000	0. 2	0	0.757	0.761	0.
	á	1.	1	1. 2	0.0	-	-
	P) ***	***	***	*	-	-

Table 8

 $(\ d)$

,	N (Δ,	×, 1.		. 1	. 2	•
1		1.000	0.22	1.	0.258	0.213	0.1 1
	d	1.1	0.1 - 1	11	0	-	-
	р	***		*	***	-	-
-		1.000	0.2 -	0. 2	0.159	0.157	0.1 0
	d	1	0.	2. 1	0.0-2	-	-
	р	***	***	***		-	-
		1.000	0.2 1	0. 2	0.183	0.176	0.1
	d	12. 0	0.	1.	0.0	-	-
	р	***	***	***	*	-	-

Table 9

 $(\ d) \qquad (* p < .0, ** p < .01, ... *** p < .001)$

	Δ.,	·, 1.		. 1	. 2	1 + r	$2 + r_{1} + r_{2}$
,	0.00	0.	0. 2	0.645	0.694	0.715	0.728
d	1.11	2. 1	2.121	1.2	0.	0.2 1	-
р	***	***	***	***	***	**	-
	0. 1	0.2 2	0.0-	0.398	0.326	0.305	0.277
d	10.1	0	2.11	1.2	0.0	0.2	-
р	***	*	***	***	***	**	-
	0.00	0.10	0	0.667	0.712	0.732	0.743
	0. 0	0.2 1	0	0.358	0.294	0.275	0.252
,	0.00	0.	0. 1	0.622	0.675	0.698	0.712
	0. 2	0.2	0. 2 -	0.439	0.358	0.335	0.301

Table 10

			· · · · · · · · · · · · · · · · · · ·					a , a . , a, . a
		، ,	·, 1.	1.4	. 1	. 2	1 + 2 , 3 1	2 + 2 + 2
	,	0.00	0. 02	0. 20	0.687	0.713	0.720	0.717
		0.	0.2	0.	0.344	0.286	0.284	0.280
		0.000	0.	0. 2	0.540	0.662	0.670	0.682
	-	0.	00-	0.2	0.538	0.366	0.359	0.346

Q. Lu, W. Liu, Z. Zhuo et al.

Declaration of Competing Interest

CRediT authorship contribution statement

 Qi
 Lu:

 ,
 ,

 Zhizheng Zhuo:
 ,

 . Yuxing Li:
 .

 . Yuxing Li:
 .

 . Liying Qu:
 .

 . Liying Qu:
 .

 . Kaou Liu:
 .

 . Yaou Liu:
 .

Acknowledgments

(1 20). (1 20). (1 0 & 1 1 -1), (. 201 -1). (. 201 -1).

Appendix A. Segmentation accuracy of the proposed method achieved with and without TractMix for the HCP dataset

Table A:1

	·, · ·				1 +	2 +
, *,	N (· ·	. 1	. 2	· · · · ·	·
. .			0. 11	0.12	0. 12	0. 12
, e	-		0.0	0.0	0. 0	0.0
	-		0.2	0.2	0. 2	0.2
	-		0.21	0.21	0. 21	0.21
•			0.	0. 1	0. 1	0.
	-		0.	0.	0.	0.

Medical Image Analysis 79 (2022) 102454

References